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Abstract

The measurement of credit quality is at the heart of the models designed to

assess the reserves and capital needed to support the risks of both individual

credits and portfolios of credit instruments. A popular speci�cation for credit-

rating transitions is the simple, time-homogeneous Markov model. While

the Markov speci�cation cannot really describe processes in the long run, it

may be useful for adequately describing short-run changes in portfolio risk.
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In this speci�cation, the entire stochastic process can be characterized in

terms of estimated transition probabilities. However, the simple homogeneous

Markovian transition framework is restrictive. We propose a test of the null

hypotheses of time-homogeneity that can be performed on the sorts of data

often reported. We apply the tests to 4 data sets, on commercial paper,

sovereign debt, municipal bonds and S&P Corporates. The results indicate

that commercial paper looks Markovian on a 30-day time scale for up to 6

months; sovereign debt also looks Markovian (perhaps due to a small sample

size); municipals are well-modeled by the Markov speci�cation for up to 5

years, but could probably bene�t from frequent updating of the estimated

transition matrix or from more sophisticated modeling, and S&P Corporate

ratings are approximately Markov over 3 transitions but not 4.

JEL Classi�cation: G12,G21,G32,C12,C15,C52

Keywords: Ratings transitions; Risk measurement; Indirect in-

ference; Speci�cation testing; Risk dynamics

1 Introduction

The measurement of levels and changes in credit quality is at the heart of the devel-

opment of a whole spectrum of models designed to assess and support the dynamic

management of credit risky assets. Several of these models are speci�cally designed

to estimate the reserves and capital needed to support the risks of both individual

credits and portfolios of credit instruments as functions of credit quality. Credit

quality can be expressed in a variety of ways, but it is increasingly common to have

credits assigned one or more ratings that summarize, over some speci�ed horizon,

a credit�s probability of default, rate of loss given default, or both. For example,

the proposed Basel II agreement (2004) requires institutions to rate assets by their

1-year probability of default and by their expected loss severity given default.

Banks, supervisors and other institutions are relying upon these systems to pro-

duce accurate, stable, representations of the risks of credit loss for current and future

populations of similar credit exposures. Financial institutions use this information

in portfolio selection. Historical information on the transition of credit exposures

from one quality level, or rating, to another is used to estimate various models that

describe the probabilistic evolution of credit quality.

A popular speci�cation is the simple, time-homogeneous Markov model. With

2



this speci�cation, the stochastic processes can be speci�ed completely in terms of

transition probabilities. These correspond nicely to summary data that are often

available and reported (though not without problems, as we note below). In partic-

ular, details on the history of individual assets are not required under this speci�ca-

tion. As an example, we apply our methods to migration matrices for commercial

paper over horizons of 30, 60, 90, 120, 180 and 270 days. Suppose we accept the

simple Markov chain speci�cation for describing credit rating transitions. Is there

anything we can say about how to check the simple Markov structure using the sum-

mary data that are commonly published? Important restrictions on credit ratings

transitions are implied by the simple Markov speci�cation, and these restrictions

suggest methods by which speci�cation tests of the model can be made.

Given the relative ease with which the simple Markov model can be estimated

or manipulated, it is not surprising that several practitioners have embedded the

Markov framework into their credit quality tracking and risk assessment/management

models. However, the adoption of the simple Markovian transition framework is not

without cost; restrictive assumptions on the nature of credit transitions are required

for the validity of this simple model. In fact, many of these assumptions are un-

realistic, and are likely to be violated by the types of credit transitions considered

by practitioners. Therefore, a diagnostic test for the validity of the simple Markov

chain model speci�cation would be a valuable tool to add to the credit risk mod-

eler�s toolkit. In the next section, we illustrate how such a test can be constructed,

and we discuss its statistical properties.

We consider testing time-homogeneity. This is not required by the general

Markov speci�cation, but seems to be a featured assumption in practice (and is an

assumption that makes much empirical work possible!). Time-homogeneity means

that the transition matrix P; whose ijth element is the probability that a loan is in

state j next period given it is in i this period, is constant over time. This is a strong

assumption. For example it might be thought that these transition probabilities

would depend on macroeconomic conditions, or conditions speci�c to the industrial

sector of the loan. Time-homogeneity is sometimes referred to as the property of

having �stationary transition probabilities.�This is probably bad terminology, as it

may cause confusion with stationarity of the stochastic process determined by these

transition probabilities. Markov chains are not usually stationary, in the sense that

the joint distribution of N successive observations may be di¤erent depending on

where they are taken. Nevertheless, a test for time homogeneity of ratings transi-
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tions is one diagnostic test that can be used to evaluate the adequacy of the simple

Markov speci�cation.

This paper proceeds as follows: section two introduces the simple Markov chain

model. Section three describes how its parameters might be estimated with the

sorts of data frequently available. Section four develops a test of the null hypothe-

ses of time-homogeneity that is implied by the simple Markov speci�cation. The

performance of the proposed statistic is considered using a simple Monte Carlo

simulation. In Section 5, the test is applied to several ratings transition datasets.

Before proceeding, it is useful to put the goals in perspective. First, credit rating

transitions cannot �really�be Markovian. To see this, note that a key probability

is the transition into default. Default is an absorbing state in any sensible speci�ca-

tion. That is, there are no transitions out of default. Strictly speaking, this implies

that in the long run, all assets are in default. This is ridiculous. However, this is

not the issue. The issue instead is whether the Markovian speci�cation adequately

describes credit rating transitions over rather short periods. Our test will allow

researchers to determine which assets look Markovian and over what periods.

2 The Markov Chain Model

One relatively simple probability model for ratings transitions that is increasingly

being used by �nancial practitioners is the Markov chain model. In the simple,

discrete Markov chain model, the states that a stochastic process Xt may occupy

at (discrete) time t form a countable or �nite set. It is convenient to label the

states by the positive integers and indicate particular values by i; j; k, etc.. We

will denote the number of unique states in a �nite-dimensional Markov chain by

the integer K. The probability of Xt+1 = j, given that Xt = i, called a one-

step transition probability, is denoted pij(t). This representation emphasizes that

transition probabilities in general will be functions of both the initial and the �nal

states, and the time of transition. When the transition probabilities are independent

of the time variable (the usual case in �nancial applications), the Markov process is

said to have stationary transition probabilities. In this case we may write pij(t) =

pij. It will be convenient to use index notation to develop our test statistic. The

data we will typically have available consist of summary statistics on multistep

transitions. The number of steps will be indexed by r; s; t,. . . . Thus, pijr =

Pr(Xr = jjX0 = i). Note that this is di¤erent from pij(r), the one-step transition
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probability associated with the transition from i to j between periods r � 1 and r.
Although the hypothesis pij(r) = pij(s) for all r; s is of interest, we will not use this

notation since we do not typically have data on one-step transitions by time index.

However, under the null hypothesis that the transition rates are invariant, we have

the relation

pijr = pik1p
kj(r�1): (1)

Here we are using the index convention that indices repeated in super and sub-

scripts are summed. Thus pijr =
P

k pik1pkj(r�1). With this notation, superscripts

are always indices and never indicate powers, which are indicated by repeating sym-

bols. All probabilities under the null are generated by the array pij1 and the above

recurrence relation. It will be convenient to parametrize the null hypothesis by the

unknown elements � of pij1, and the elements of � will be indexed by a; b; c, etc.

Because the state must either remain unchanged (with probability pii), or move

to one of the alternative states, the sum over destination states of transition prob-

abilities must equal one,
PK

j=1 pij = 1. This is one of the reasons the parameter

vector � is introduced; not all elements of pij1 are unknown.

The simplicity of this recurrence relation emphasizes why the simple Markov

chain model has proven so attractive a framework for those seeking to describe

the ratings transition behavior of credit. Note the interpretations possible: If Xt

identi�es the risk category of a single asset, for example Xt = (0; 0; 1; 0; :::; 0), say,

indicating the asset is in the third risk group, then Xt+1 = (p311; p321; :::; p3K1) is the

probability distribution across risk states in time t+1 for an asset in risk state 3 at

time t in the time-homogeneous case. Alternatively, if Xt is itself the distribution of

assets across risk categories at time t, then Xt+1 is the corresponding distribution

in time t + 1. The same probabilistic framework applies to single assets and the

portfolio as a whole.

In the non-homogeneous case the transition probabilities should be indexed by

t, Pt and consequently so should the pijr, i.e. the r-step transition probabilities

depend on the time period in which the initial transition occurs. In this case the

model remains Markovian in that the distribution across states in the next period

depends only on the distribution in the current period (and not on the distributions

in previous periods). That is, the transitions are memoryless. History does not

matter given the current state. In the credit ratings context, this result is equivalent

to saying that given a credit�s current rating, the likelihood that the credit will move
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to any other rating level, or keep its current one, is independent of its past ratings

history. While an interesting characteristic of Markovian transitions, this property

seems to run against the widely held view that actual credit ratings changes exhibit

"momentum." Conditional on the current rating level, a future credit downgrade

is perhaps more likely if the credit had experienced a downgrade in the previous

period, than if it had experienced an upgrade or no change in rating; see, for example

Carty and Fons (1993) or Bangia, Diebold, Kronimus, Schagen, and Schuermann

(2002).

3 Estimation

Estimation of the transition probabilities in a simple Markov chain can be carried

out simply by counting the number of changes from one state to another that occur

during a speci�ed sample period and using sample fractions as estimators. These

are method of moments estimators and MLEs. The estimation and inference prob-

lem here is classical; leading early papers include Anderson and Goodman (1957),

Billingsley (1961) and the application-focused paper by Chatfeld (1973). Both max-

imum likelihood and minimum chi-squared (method of moments) approaches have

been studied and used as a basis for inference as well as estimation. The likelihood

method is treated recently in the credit transition application by Thomas, Edelman

and Crook (2002). A variety of methods for estimating continous-time transition

matrices are studied in Lando and Skodeberg (2002). Continuous time models

can be �t on the basis of discrete data with appropriate assumptions. Jafry and

Schuermann (2004) provide a comparison of di¤erent estimators suggested by Lando

and Skodeberg (2002). Continuous observation o¤ers real advantages, in that the

discrete-time approximation need not be maintained. However, these methods re-

quire data con�gurations not typically available in the summary statistics provided

by �nancial institutions or rating services.

Our basic data consist of the empirical multistep average transition rates eijr
together with the sample sizes nri, indicating the number of assets in the initial

state i used to compute the eijr across the destination states j and over r steps.

This data distinguishes our approach, since others tests (Thomas, et.al.) have

been formulated based upon raw data or (equivalently) su¢ cient statistics. The

su¢ cient statistics are, in a natural notation, eij(r); the one-step transition rates in

each starting period. As a practical matter, these are rarely available.
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Although an unrestricted parametrization in terms of the pij(t) may seem nat-

ural, the equivalent parametrization in terms of pijr (without imposing the re-

stricted parametrization in terms of � or the recurrence relations relevant to the

time-homogeneous case) is substantially more convenient, in that the unrestricted

estimators are simply p̂ijr = eijr. For this reason we will no longer use the nota-

tion p̂ijr or distinguish the unrestricted estimator from the data eijr. The notation

pijr will refer to the restricted speci�cation. To estimate the restricted model we

will minimize the deviations dijr = dijr(�) = eijr � pijr(�) in an appropriate met-
ric, where the dependence of the deviations on � is implied where not necessarily

explicitly indicated.

Our approach admits an indirect inference interpretation, along the lines of that

described by Gourieroux, Monfort, and Renault (1993), and Gallant and Tauchen

(1996). The method can also be viewed within the framework of asymptotic likeli-

hood (Jiang and Turnbull (2004)), which suggests satisfactory practical performance

for the estimator.

We estimate � by minimizing the weighted sum of squares

TS� (�) = dijr(�)dk1s(�)� ijrkls (2)

where � is an array of weights assigned to the squares and cross-products of the

deviations. We consider di¤erent speci�cations of � , noting that the optimal weights

consist of the precisions of the deviations (precisely, the inverse covariance of the

eijr).

First, we consider the simplest speci�cation, � ijrkls = �ij�jk�kl�rs, where the

Kronecker �ij = 1 if i = j and zero otherwise, leading to minimization of the sum

of squares

TSl(�) = dijr(�)d
ijr(�) (3)

which is easily seen to yield a consistent estimator of �. In fact, this is useful in

obtaining quick initial estimates of � to use in constructing the weight matrix for

an e¢ cient estimator. A simple improvement weights by 1/nir, leading perhaps

to a modest e¢ ciency gain and certainly to a well-de�ned asymptotic distribution

theory. We next consider the sum of squares weighted by the associated precisions

using � ijrkls = �ij�jk�kl�rsnir=((1 � pijr)pijr). Implementation requires some initial
estimate of pijr. It is natural to use the unrestricted estimator eijr, leading possibly

to a high-order e¢ ciency loss (but no �rst-order loss). Since this corresponds to
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a diagonal covariance speci�cation, we refer to the associated criterion function

as TSD. A further re�nement is possible by introducing approximate covariances

across empirical transition rates from the same initial state. Let !, an array of

variances and covariances correspond to the inverse of the precision � . Then let

!ijrkls = �ij�jk�k1�rs((1� pijr)pijr)=nir + (1� �ij)�ik�rs(�pijrpilr)=nir (4)

+(1� �ij)�ik(1� �rs)(pijrpjl(s�r) � pijrpkls)=nis

for s � r and �ll in the s < r case by symmetry. Note the symmetry: !ijrklr = !k1rijr
(symmetry for �xed steplength, and !ijrkls = !ijsklr (symmetry across steplengths

for �xed transitions.). As above, the unrestricted estimators eijr can be substituted

for the pijr in calculating the weights without a¤ecting the �rst-order e¢ ciency. The

resulting weighted sum of squares is denoted TSBD. Of course, redundant elements

of dijr must be deleted, eg. those re�ecting the restriction on row sums, or else (and

equivalently) a generalized inverse must be used.

These approximate variance and covariance calculations are precise if we ob-

served the 1 and multi-step transitions starting from a given time. In fact, the

exact calculations are complicated by the fact that the reported summary statistics

are typically average 1-step transition rates across assets and over time, average

2-step (same assets but 1 fewer step), etc. Add to this already complicated situa-

tion the fact that new assets enter the sample, and others leave, over the sample

period and the precise variance calculation becomes problematic. We can expect

covariance between elements of di¤erent rows, as well as a modi�ed structure across

columns within a row.

To obtain a better approximation to the optimal weighting matrix, and thus not

only more e¢ cient estimates but a better approximation to the sampling distribu-

tion of the test statistic, we suggest a simulation estimator for !, and hence � . For

the simulation estimator, we begin with a consistent estimator for �, possibly ob-

tained by minimizing TSIor TSD (our actual choice in practice). We then generate

assets in the numbers given by ni1; the observed number of assets experiencing a

one-step transition beginning in state i; and follow them over time as they move

between states according to the transition probabilities given by our initial �. We

calculate the empirical transition rates corresponding to the basic data eijr. We do
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this exercise M times and then calculate the sample covariance of the simulated

eijr. That sample covariance (deleting the redundant elements) is our ! and its

inverse gives the weights �. M is important in the sampling distribution but not in

the asymptotics. Increasing M is simply a matter of (small amounts of) computer

time, so this does not pose a real constraint. The weighted sum of squares using

this simulated weight matrix is TSs.

We are now in a position to estimate the restricted model and test the hypothesis

that the transition data are generated by a time-homogeneous Markov chain. In

many applications to ratings transitions, the worst state is the absorbing state,

default. With the convention that state 1 is the best (AAA in S&P and Fitch, Aaa

in Moody�s, etc.) and state K the worst, we have that the pKjr = eKjr = �Kj; there

are no transitions out of default. Thus, the array eijr has (K�1)2�T non-redundant
elements in the unconstrained case, where T is the maximum steplength and we note

the adding up constraint on the probabilities out of each state. If there is no default

state, then there are (K� 1)�K�T nonredundant transition probabilities. In the
constrained model all the transition probabilities can be generated from the one-

step transition matrix through the recursions above. The point is that the number

of parameters is not unduly large in practical applications and it does not increase

with the number of periods available in the time-homogeneous case. There are other

restrictions as well (pij 2 [0; 1]) which make a reparameterization convenient before
maximization.

We have found it useful to reparameterize with a logit transform to new para-

meters

�ij = ln(pij=(1�
PK�1

j=1 pij)); (5)

noting that this speci�cation implies that �iK = 0. We then maximize numerically

with respect to the (K � 1)2 or (K � 1)�K (depending on whether there is an ab-

sorbing state) unrestricted parameters �ij. This is a fairly easy maximization using

any of many available software packages. The reparametrization is useful for com-

putation since, due to the nature of our data, multistep transition matrices rather

than sequences of one-step transition statistics, nonlinear optimization is required

to estimate the constrained model. With the transformation, the parameters in

the optimization are unconstrained. Convenient starting values are provided by

the logit transforms of the sample fractions making up the 1-period transition data

(eij1). Finally, we rule out zeros among the transition probabilities, taking the posi-
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tion that no transition, however unlikely, is really impossible. To this end, we bound

the estimated transition probabilities from below by 10�8. As this corresponds to

a transition on average once every 100 million periods, we do not regard this as a

restriction likely to be binding.

Using standard arguments for a GMM interpretation,

�GMM = argminfdijr(�)dkls(�)� ijrklsg (6)

can be minimized directly or by solving the FOC

dijr=a(�)dkls(�)�
ijrkls = 0 (7)

Note that di¤erentiation in this notation is indicated though use of a "/" followed

by the appropriate index.

Any weights (almost) will give a consistent estimator. E¢ ciency, within this

class, requires that the weights are the precisions. Then,

n1=2(� � �GMM)! N(0; Q�1) (8)

with

Qab = dijr=a(�)dkls=b(�)�
ijrkls: (9)

To obtain an asymptotic likelihood interpretation, note that since eijr is a sample

mean,

n1=2(eijr � pijr(�))! N(0; !) (10)

which suggests an indirect likelihood, approximate likelihood, or asymptotic likeli-

hood approach using this normal distribution as a likelihood function

L(�) = c(t) expf�1=2dijr(�)dkls(�)� ijrklsg (11)

to be maximized over � for a �xed � , giving the estimator �AL. Standard arguments

give

n1=2(� � �AL)! N(0; Q�1) (12)

and the asymptotic chi-squared distribution for the likelihood ratio statistic.

Jiang and Turnbull (2004) show that �AL has minimum asymptotic variance

among all CAN estimators based on e. Indeed, it can be shown that the esti-
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mators (the GMM and the AL estimators are the same) of � are consistent and

asymptotically normally distributed, with asymptotic covariance matrix given by

Cov(�a; �b) = gab = dijr=adkls=b�
ijrkls.

4 Testing Time-Homogeneity

The test statistic we propose is the minimized value of TSS, which is easily seen by

standard arguments to have asymptotically a �2((K�1)2(T �1)) distribution when
there is an absorbing state and a �2(K(K � 1)(T � 1)) distribution when there is
no absorbing state. We have examined the other minimized TS criterion functions

for use as test statistics, but it seems that the various approximations to the actual

�optimal�weighting matrix are poor and the associated approximate asymptotic

distribution theory provides poor approximations to their sampling distributions.

It is useful to consider whether the test has power against other departures

from the time-homogeneous Markov model. Departures of interest include alter-

natives with more dependence than the Markov speci�cation allows. For example,

does next period�s distribution of assets across risk categories depend not only on

the current distribution but on previous distributions as well? If so, the process

is not Markovian. Our test will have power against these alternatives if these

processes can be better approximated by a time-inhomogeneous process than by a

time-homogeneous process. To see the argument, note that a misspeci�ed model

will have parameters (sometimes called quasi-true values) that minimize the infor-

mation distance between the misspeci�ed parametric family and the true model.

If both the constrained (homogeneous) and the unconstrained Markov models are

incorrect, but the unconstrained is closer in information distance to the true model,

our test will see this di¤erence and provide evidence against the constrained model.

Thus it can be expected that our test has power against a fairly broad class of

alternatives to the time-homogeneous Markov speci�cation.

5 Sampling Performance

In order to assess our asymptotic approximations to the null distribution of our test

statistic, we carry out a series of simulations. A representative subset is reported

here. Figure 1a reports the null sampling distribution for the test statistic based on
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the diagonal approximation to the covariance matrix, TSd for a 5-state model with

1-step and 2-step transitions and 1000 assets. The data generating process used the

transition matrix 0BBBBBB@
0:4 0:2 0:2 0:1 0:1

0:2 0:4 0:2 0:1 0:1

0:1 0:2 0:4 0:2 0:1

0:1 0:1 0:2 0:4 0:2

0 0 0 0 1

1CCCCCCA
The sampling distributions were calculated on the basis of 2000 realizations (a

realization is a transition history) throughout. The cdf of the test statistic is sub-

stantially to the right of the chi-square(16) distribution, perhaps indicating that the

diagonal is a poor approximation to the covariance matrix of the auxiliary statis-

tic (we know it is not a correct speci�cation; now we know it is not a satisfactory

approximation). Figure 1b reports the same statistic with 1,2,3,4, and 5-step tran-

sitions. Here the null distribution is chi-square(64). The cdf is still to the right

of the desired null distribution. The statistic based on a diagonal approximation

would apparently lead to overrejection. relative to the nominal size.
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Figure 1b:
TS_Diag Distribution with k=5, T=5, and N=2000
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Figures 2a and 2b report the same experiment with the block-diagonal approx-

imate covariance matrix. This approximation adjusts for covariances across the

elements of the within-period transition matrix but does not account for the av-

eraging involved in the development of the auxiliary statistic. It too overrejects

relative to the chi-squared baseline.
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Figure 2a:
TS_BlockDiag Distribution with k=5, T=2, and N=2000
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Figure 2b:
TS_BlockDiag Distribut ion with k=5, T=5, and N=2000
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We turn next to the results based on the simulated covariance matrix. These

work remarkably well, as shown in Figures 3a and 3b (the same experimental speci-

�cation). In the simulation we used M = 2000. The actual distributions of the test
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statistic match well the asymptotic chi-square distribution. We conclude that the

simulation estimator gives an asymptotic distribution with which we can control

size accurately. We did not do power simulations, though the statistic does reject

in actual applications, so there is evidence of some power. Note that the likelihood

ratio statistic depends in general on data not available to us (recall that the su¢ -

cient statistic is the sequence of one-step transitions for each period) and therefore

our test cannot have maximal power. It can have maximum asymptotic power for

tests based on our auxiliary statistic, and does (Jaing and Turnbull, 2004).

Figure 3a:
TS_Sim Distribution with k=5, T=2, and N=2000
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Figure 3b:
TS_Sim Distribution with k=5, T=5, and N=2000
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Simulations were carried out for a variety of other speci�cations. One feature of

the data sets seen in practice is that the diagonals are typically large and the o¤-

diagonals small. This is re�ected in our speci�cation of the DGP above. Simulation

results were also produced for a transition matrix that more closely resembles the

one period transition of rated corporate bonds:0BBBBBB@
0:97 0:02 0:005 0:0045 0:0005

0:1 0:87 0:015 0:0135 0:0015

0:05 0:2 0:6595 0:0405 0:05

0:05 0:12 0:2 0:53 0:1

0 0 0 0 1

1CCCCCCA
Figure 4 illustrates that the TS-Sim distribution for this exercise yielded results

nearly identical to those reported in Figures 3a and 3b.
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Figure 4:
TS_Sim Distribution with k=5, T=3, and N=1000
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6 Data and Applications

While several institutions have their own historical data and ratings assignments

with which to estimate Markov transition models, several alternative sources exist

from which credit rating transition matrices might be obtained. Transition matrices

are regularly published by the major rating agencies, including Moody�s and Stan-

dard and Poor�s; they are also available from risk management consulting companies

and vendors of credit risk models including RiskMetrics, KMV and Kamakura, Inc.

Unfortunately, reporting standards in this area are fairly lax. Often, transition frac-

tions are reported with no indication of the size of the underlying data set, or the

initial distribution of assets across risk categories. Since many of these transitions

are low-probability events, large samples are necessary for precise estimation. This

information should be routinely provided as a matter of sound statistical practice.

We have assembled several data sets with which to illustrate our technique and

demonstrate its usefulness.

17



6.1 Commercial Paper

These data are from a study by Moody�s (2000). This study is also commendable in

the detail provided. Commercial paper defaults are extremely rare, although there

is some migration among rating categories (here P-1, P-2, P-3 and NP; P is for

prime). Moody�s goal is that commercial paper with any prime rating should never

default. Since commercial paper, in contrast to the municipals studied above, are

short term assets, the transitions examined are 30-day transitions. The Moody�s

study reports transitions over 30, 60, 90, 120, 180, 270 and 365 days. Note that

the �missing�powers of P at 150, 210, 240, 300, and 330 days present no problem

for our methods. The data up to the 180 day transitions exhibit expected patterns,

for example the transitions into default (and generally transitions out of the initial

state) are increasing with the length of the time span. However, for 270 and 365

days, the transitions from NP into default are zero. This appears problematic and

is perhaps due to de�nitions Moody�s has used and the fact that commercial paper

is rarely extended for long periods. We have chosen simply not to use the data for

270 and 365 days. Another question arises as to the treatment of Moody�s category

WR �withdrawn. These occur because commercial paper is not rolled over so

the asset size becomes negligible, or the market has otherwise lost interest in the

o¤ering. It is apparently not a synonym for default or a decline in creditworthiness.

Consequently, we treat these as censored. Again, to illustrate the use of the test,

we calculate the statistic based on increasing numbers of periods. Results are given

in Table 1.

Table 1: Tests for Commercial Paper, 1972-1999

Transitions Chi-Square DF P-value

1,2 1.44 16 1.0000

1,2,3 11.38 32 0.997

1,2,3,4 41.56 48 0.7346

1,2,3,4,6 74.55 64 0.1727

There is no serious evidence against the Markov speci�cation. Recall that the

time scale here is 30 days; commercial paper is generally short lived. The Markov

model �works� over the period available (6 months). This is probably also the

relevant period for applications. Note that the sample size here is enormous, so these

results are pretty �rm and it may be considered surprising that the tightly speci�ed

model is not soundly rejected for all transitions. The numbers of observations for
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the 1-step transition matrix, for the nondefault states, for example, are 264000,

561000, 6600, and 3300.

It is useful to look closely at the �t. We focus on the 4-step model. Table 2

shows the estimated (constrained) 4-step transition matrix (the fourth power of the

1-step matrix estimated on the basis of all of the transitions), the empirical 4-step

matrix, and their di¤erence.

Table 2: Commercial Paper 4-Step Rating Transition Matrices

Estimated

0.98791 0.01161 0.00019 0.00029 0.00001

0.02172 0.95808 0.01601 0.00393 0.00026

0.00591 0.05768 0.88110 0.05440 0.00091

0.00273 0.01117 0.02034 0.96231 0.00345

0 0 0 0 1

Empirical

0.98785 0.01164 0.00020 0.00031 0.00000

0.02206 0.95814 0.01557 0.00402 0.00021

0.00618 0.05976 0.88261 0.05033 0.00112

0.00207 0.00977 0.02208 0.96240 0.00368

0 0 0 0 1

Empirical-Estimated

-0.000056 0.000025 0.000016 0.000019 -0.000005

0.000339 0.000061 -0.000441 0.000096 -0.000054

0.000270 0.002079 0.001514 -0.004076 0.000213

-0.000664 -0.001395 0.001735 0.000094 0.00230

0 0 0 0 0
Note: The numbers of assets for computing the 4-step transition matrix are

(6560, 1394, 164, 82). Di¤erences greater than 0.001 in absolute value are

italicized .

Transitions are fairly rare: the minimum diagonal element is approximately

0.88 (constrained and unconstrained). There are a number of suggested summary

measures for the amount of mobility in a transition matrix. These are discussed in

Jafry and Schuermann (2004), who suggest

M = K�1
KX
i=1

p
�i((P � I)(P � I)T ) (13)
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where P is the transition matrix in question and �i(A) are the eigenvalues of A.

For motivation see Jafry and Schuermann (2004); note that M=0 for the identity

transition matrix and 1 for (strict) permutations. Note also that M and related

mobility measures do not de�ne metrics on the space of transition matrices. In this

CP application,M =0.0449 for the estimated (constrained) 4-step transition matrix

and 0.0445 for the data (the unrestricted frequency estimator). The �t is clearly

quite good, in terms of the mobility measure and of the matrices themselves. Entries

greater than 0.001 in absolute value are italicized in the third panel (the �residual�).

It would be hard to argue that there are economically important di¤erences between

the constrained and unconstrained models. Although the �t is good, the data may

be rich enough to support �ner and more sophisticated modeling of this stochastic

process. Such a modi�ed model would address the �nding that there are slightly

more defaults in the 4-th step from the two lowest rating categories than expected

on the basis of the constrained model. Further, �ows out of the third risk category

are higher than expected on the basis of the Markov model. Most of the unexpected

out�ow consists of upgrades. Comparing the 6-step empirical vs. estimated leads to

the same conclusion: the di¤erences are not economically important. The Markov

model appears to perform well in explaining Commercial Paper ratings transitions

over periods up to a maximum of 6 months.

6.2 Sovereign Debt

These data are from Standard & Poor�s (2003). Again, suitable detail is provided.

Here, it appears that overlapping cohorts were used to calculate the transition

matrices. For example, in a sample of 15 years, there is one 15-year cohort, two

14-year, three 13-year, etc. Transitions among 8 rating categories including default

are recorded. In the case of sovereign debt, default must be de�ned particularly

carefully, as some of the debt to preferred creditors is often serviced after default.

S&P give a discussion in Appendix 2, and 1, 5 and 7 year transition rates are

reported. Our results are reported in Table 3.

Table 3: Tests for Sovereign Debt, 1975-2002

Transitions Chi-Square DF P-value

1,3 20.5 49 1.0000

1,3,5 126.77 98 0.0629
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The time-homogeneous Markovian speci�cation appears �ne for the 5-year pe-

riod. It should be noted that the sample sizes are relatively small here (from the

least risky, the number of assets in the average 1-step transition matrix by state are:

304, 179, 111, 123, 130, 75, and 6; the default transitions are constrained), and this

is perhaps driving the statistical result, as the �t is not at all as good as that for

the commercial paper. Table 4 gives the constrained and unconstrained 5-period

transition matrices and again, in the third panel, their di¤erence.
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Table 4: 5-Year Sovereign Debt Rating Transition Matrices

Estimated

0.92227 0.07671 0.00055 0.00022 0.00024 0.00001 0.00000 0.00000

0.05428 0.90885 0.01941 0.00828 0.00820 0.00071 0.00008 0.00020

0.00150 0.07333 0.79521 0.11205 0.00593 0.00979 0.00125 0.00094

0.00004 0.00628 0.19779 0.63704 0.09054 0.03234 0.01028 0.02569

0.00002 0.00092 0.01541 0.13874 0.64234 0.14562 0.00792 0.04903

0.00001 0.00075 0.02259 0.01308 0.16358 0.66295 0.04429 0.09277

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00599 0.99401

0 0 0 0 0 0 0 1

Empirical

0.86556 0.11859 0.00001 0.00001 0.01580 0.00001 0.00001 0.00001

0.08590 0.85937 0.03130 0.01560 0.00780 0.00001 0.00001 0.00001

0.00001 0.12310 0.67688 0.16919 0.01540 0.01540 0.00001 0.00001

0.00001 0.00001 0.30515 0.45768 0.11862 0.05081 0.01690 0.05081

0.00001 0.00001 0.01490 0.19401 0.53734 0.17911 0.00001 0.07461

0.00001 0.00001 0.05000 0.00001 0.15000 0.54998 0.05000 0.19999

0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.99993

0 0 0 0 0 0 0 1

Empirical-Estimated

-0.05671 0.04188 -0.00054 -0.00021 0.01556 0.00000 0.00001 0.00001

0.03162 -0.04947 0.01189 0.00732 -0.00040 -0.00070 -0.00007 -0.00019

-0.00149 0.04977 -0.11833 0.05715 0.00946 0.00561 -0.00124 -0.00093

-0.00003 -0.00627 0.10737 -0.17936 0.02808 0.01847 0.00662 0.02512

-0.00001 -0.00091 -0.00051 0.05528 -0.10500 0.03349 -0.00791 0.02557

0.00000 -0.00074 0.02741 -0.01307 -0.01358 -0.11296 0.00571 0.10723
0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 -0.00598 0.00592

0 0 0 0 0 0 00 0
Note: The numbers of assets for computing the 5-step transition matrix are

(249, 127, 65, 56, 61,22, 1). Di¤erences greater than 0.01 in absolute value

are italicized; those greater than 0.1 are bolded.

Here, di¤erences between the constrained and unconstrained transition proba-

bilities (5-year) greater than .01 are italicized and di¤erences greater than 0.1 are

also in bold. The �t is obviously much worse than the �t for commercial paper

22



(hence the di¤erence in the highlighting threshold). That these di¤erences are not

statistically signi�cant is no doubt due to the small sample sizes. The mobility

measures M=0.3617 (constrained) and 0.4464 (unconstrained) are quite di¤erent

in magnitude. The di¤erences indicate that sovereign debt needs to be monitored

carefully and probably on a case-to-case basis. The Markov model does not do a

great job of capturing these transitions. Nevertheless, it is doubtful that a more

complicated model would be supported by the data.

6.3 Municipal Bonds

These data are from a well-known Standard and Poor�s study published on the web

(Standard & Poor�s, 2001). This data set contains information on rating transitions

of municipal bonds through 8 rating categories and a nonrated category from 1986

through 2000. Average 1-year, 2-year, and through 15-year transition matrices are

reported. This is a rare study that gives su¢ cient detail to be realistically useful.

We have run tests based on the 1 and 2 year data, the 1,2 and 3 year data, and so on

up to 5- year transitions. Results are shown in Table 5. We see here that the Markov

speci�cation is adequate for describing annual ratings transitions for periods up to

about 5 years. The model is fairly reliable for 1,2,3, and even 4 year transitions,

but begins to fail when looking 5 years out. The implication for practice is that

municipal bond rating transitions can over reasonable periods be described by a

simple time-homogeneous model, but the transition probabilities should probably

be updated, and the new ones used, every few years. The updating should be done

on a rolling basis, discarding older data as new years become available, as the older

data are no longer relevant as far as the Markov approximation is concerned (though

they would be useful in developing a richer model for longer-term modeling).

Table 5: Tests for Municipal Bonds 1986-2000

Transitions Chi-Square DF P-value

1,2 56.59 49 0.2130

1,2,3 128.6 98 0.0207

1,2,3,4 173.5 147 0.0669

1,2,3,4,5 937.6 196 0.0000

In order to understand the rejection for the long-period prediction, we again

calculate the estimated transition matrix (constrained) and compare it with the
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actual 5-period transition. For the �rst 4 ratings categories, there is substantial

inertia. For the next two, there is substantial out�ow, consisting mostly of upgrades.

For the worst (nondefault) category, there are substantial defaults.

Table 6: 4-Year Municipal Bond Rating Transition Matrices

Estimated

0.95777 0.03954 0.00259 0.00010 0.00000 0.00000 0.00000 0.00000

0.01562 0.92465 0.05528 0.00430 0.00010 0.00002 0.00001 0.00000

0.00044 0.06507 0.87868 0.05234 0.00255 0.00048 0.00029 0.00014

0.00004 0.00683 0.09097 0.86197 0.02479 0.00766 0.00435 0.00341

0.00003 0.00440 0.02047 0.42443 0.45700 0.06415 0.00775 0.02177

0.00000 0.00130 0.02122 0.41031 0.01569 0.31772 0.06428 0.16949

0.00000 0.00039 0.00255 0.09432 0.09646 0.14310 0.26578 0.39741

0 0 0 0 0 0 0 1

Empirical

0.96155 0.03630 0.00210 0.00001 0.00001 0.00001 0.00001 0.00001

0.01560 0.92477 0.05530 0.00410 0.00001 0.00010 0.00010 0.00001

0.00030 0.06521 0.87808 0.05231 0.00270 0.00040 0.00030 0.00070

0.00020 0.00640 0.09172 0.86157 0.02460 0.00750 0.00450 0.00350

0.00001 0.00300 0.01470 0.40714 0.47784 0.07371 0.00300 0.02060

0.00001 0.00001 0.00001 0.37655 0.03899 0.36365 0.06489 0.15588

0.00001 0.00001 0.00001 0.21664 0.01670 0.08331 0.26665 0.41667

0 0 0 0 0 0 0 1

Empirical-Estimated

0.00378 -0.00324 -0.00049 -0.00009 0.00001 0.00001 0.00001 0.00001

-0.00002 0.00012 0.00003 -0.00020 -0.00009 0.00008 0.00009 0.00001

-0.00014 0.00014 -0.00060 -0.00003 0.00015 -0.00008 0.00001 0.00056

0.00016 -0.00043 0.00075 -0.00040 -0.00018 -0.00016 0.00015 0.00009

-0.00002 -0.00140 -0.00577 -0.01729 0.02085 0.00955 -0.00475 -0.00117

0.00001 -0.00129 -0.02121 -0.03375 0.02330 0.04593 0.00061 -0.01361

0.00001 -0.00038 -0.00254 0.12232 -0.07975 -0.05979 0.00087 0.01926

0 0 0 0 0 0 0 0
Note: The sample sizes for the one-step average transition matrices are, by state

from the least risky, (781, 19650, 45771, 20060, 730, 203, 98)

Defaults are zero throughout. The numbers of assets for computing the 4-step
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transition matrix are (558, 14450, 35715, 15481, 612, 174, 79).

In the third panel, di¤erences greater than .005 in absolute value between

the empirical and predicted are italicized.

Out�ows from the rating categories 4,6, and 7 are underpredicted. Defaults

from the 6th category are overpredicted and from the 7th underpredicted. Here,

the mobility measures M=0.3373 (constrained) and 0.3282 (unconstrained) are not

substantially di¤erent, illustrating the importance of the comment thatM , while a

useful measure of mobility, is not a distance metric. Thus, �munis�are well-modeled

by the time homogeneous Markov model only for a few (perhaps 4) years.

6.4 S&P Corporates

Data for this example consists of S&P-rated �rms in the KMVNorth American Non-

Financial Dataset , which for practical purposes mirrors the Compustat dataset.

In order to deal with the sparseness of the transition matrix based upon individual

S&P rating categories we used the following correspondence to map S&P ratings to

a custom rating scale.

Table 7: Mapping of S&P Corporate Ratings

S&P Ratings Bucket

AAA,AA+,AA,AA- 1

A+,A,A- 2

BBB+,BBB 3

BBB-,BB+ 4

BB,BB- 5

B+,B,B- 6

CCC+,CCC,CCC-,CC,C 7

D 8

Note that while many possible aggregations exist, seven non-default buckets is

required under the advanced internal ratings based approach of the Basel II capital

accord. Our chosen mapping results in a more uniform distribution of assets across

the rating buckets than would, say, a mapping based upon whole grades (AAA, AA,

A, BBB, BB, etc. ), and re�ects a key goal that several internal bank rating systems

are trying to achieve: the addition of granularity and risk di¤erentiation for those

obligors of medium to low credit quiality (rated and unrated) with whom the bank
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typically does business. Rating transitions for this custom scale were computed for

cohorts of �rms starting in September 1993 and running through September 2004;

average cumulative multi-year credit-rating transition matrices were computed and

were then tested for time-homogeneity. Results are reported in Table 8.

Table 8: Tests for S&P Corporates 1993-2004

Transitions Chi-Square DF P-value

1,2 23.8747 49 0.9991

1,2,3 109.911 98 0.1933

1,2,3,4 3815.96 147 0.0000

The Markov constraint seems to hold adequately for 3 transitions but breaks

down at 4, suggesting care in using the Markov model to forecast for more than a

year or two (but supporting its use in forecasting over this short horizon.
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Table 9: 4-Year S&P Corporate Rating Transition Matrices

Estimated

0.72731 0.23032 0.03341 0.00391 0.00085 0.00043 0.00244 0.00132

0.02057 0.68179 0.2007 0.03428 0.00903 0.00789 0.02785 0.01789

0.00346 0.12538 0.38357 0.10727 0.00903 0.07043 0.13355 0.14112

0.00033 0.01773 0.11238 0.27357 0.03521 .15027 0.22416 0.08825

0.00004 0.00264 0.02344 0.12824 0.51377 0.21716 0.07249 0.04223

0.00000 0.00033 0.00387 0.02686 0.15018 0.58199 0.11800 0.11877

0.00000 0.00004 0.00071 0.00671 0.04884 0.38826 0.24111 0.31434

0 0 0 0 0 0 0 1

Empirical

0.69440 0.27780 0.02780 0.0000 0.00000 0.00000 0.00000 0.00000

0.02030 0.74627 0.18272 0.04060 0.00760 0.00250 0.00000 0.00000

0.00000 0.14530 0.63850 0.13510 0.05070 .02030 0.00030 0.01010

0.00000 0.02730 0.20220 0.53010 0.18030 0.04370 0.01090 0.00550

0.00000 0.00910 0.05451 0.23182 0.43644 0.23182 0.02270 0.01360

0.00000 0.00000 0.00530 0.08470 0.25400 0.51320 0.09520 0.04760

0.00000 0.00000 0.00000 0.00000 0.00000 0.71430 0.28570 0.00000

0 0 0 0 0 0 0 1

Empirical-Estimated

-0.0329 0.0475 -0.0056 -0.0039 -0.0009 -0.0004 -0.0024 -0.0013

-0.0003 0.0645 -0.0180 0.0063 -0.0014 -0.0054 -0.0278 -0.0179

-0.0035 0.0199 0.2549 0.0278 0.0155 -0.0501 -0.1336 -0.1310
-0.0003 0.0096 0.0898 0.2565 0.0470 -0.1066 -0.2133 -0.0828

0.000 0.0065 0.0311 0.1036 -0.0773 00.0147 -0.0498 -0.0286

0.0000 -0.0003 0.0014 -0.03375 0.1038 -0.0688 -0.0228 -0.0712

0.0000 0.0000 -0.0007 0.12232 -0.0488 0.3260 0.0446 -0.3143
0 0 0 0 0 0 0 0
Note: The numbers of assets for computing the 4-step transition matrix are

(144, 394, 296, 183, 220, 189, 7). Di¤erences greater than 0.01 in absolute value

are italicized and greater than 0.1 are bolded.

Although the constrained and unconstrained 4-year transition matrices are quite

clearly di¤erent (entries above 0.1 in absolute value are in bold) the mobility measure

is not too di¤erent (though note we have not supplied a standard error): M=0.493
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constrained, 0.426 unconstrained. This is consistent with the �nding of Jafry and

Schuermann (2004) that the time homogeneity assumption within a year did not

dramatically a¤ect the inference on the mobility measure; we �nd that the cross-

year time homogeneity assumption also does not a¤ect the mobility measure. Our

�nding that time-homogeneity fails over the longer period is also consistent with

their results that there is a drift in mobility over time. Our analysis here serves

primarily the purpose of demonstrating the feasibility of our techniques. Further

analysis of this data set will focus on patterns across industries as well as over time.

7 Conclusion

The time-homogeneous Markov model for transitions among risk categories is widely

used in areas from portfolio management to bank supervision and risk management.

It is well known that these models can be overly simple as descriptions of the

stochastic processes for riskiness of assets. Nevertheless, the model�s simplicity

is extremely appealing. We propose a likelihood ratio test for the hypothesis of

time-homogeneity. Due to a convenient reparametrization, the test is simple to

compute, requiring numerical estimation of only the restricted model, a (K-1)/2-

parameter problem where K is the number of risk categories. The test can be based

on summary data often reported by rating agencies or collected within banks. We

recommend that the test be interpreted as determining whether or not transitions

over particular periods can be adequately modeled as Markov chains. Speci�cally,

we do not recommend interpreting the test as showing that the true underlying

process is or is not Markovian. Not only does this interpretation confuse failing

to reject with evidence in favor, it does not address the interesting issue. The

transitions cannot truly be Markovian in the long run �the prediction would be

that everything defaults. However, in some cases transitions can be usefully modeled

as Markovian over periods of useful length.
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