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Introduction

The Basel II framework provides for (some) banks to determine
parameters necessary to calculate minimum capital requirements.
Banks using Internal Ratings Based (IRB) methods must calculate
default probabilities (PD), and other quantities
For safe assets, calculations based on historical data may "not be
su¢ ciently reliable" to form a probability of default estimate
This has caused concern (Newsletter 6, BBA, LIBA, ISDA paper,
panicky articles).
I argue for a probability approach incorporating expert information
explicitly.
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The Setting and Program

Estimation of the default probability � for a portfolio of safe assets.

Modeling of uncertainty through probabilities: The speci�cation of
the likelihood function
The role of expert information about the unknown default
probability
Combination of expert and data information
Elicitation of an expert�s information and representation in a
probability distribution
Inference issues and supervisory issues

N. M. Kiefer Default Estimation



Uncertainty
Likelihood and Expert Information

Inference

Characterization
Coherence

Preview of Results

For a low-default portfolio (described below) with 100 observations
(asset-years),
The estimated PDs for 0,1,2 or 5 observed defaults are:
Maximum Likelihood (frequency estimator) 0.0, 0.01, 0.02, 0.05
Bayesian: 0.0036, 0.0052, 0.0067, 0.0109.
We will show the Bayesian estimators have a sound logical basis.
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The Characterization of Uncertainty

Consider default con�gurations, Ei ,
E1 might be that asset 1 and only asset 1 defaults.
Ek might be a more complicated event, like "assets 3, 4 and 22-30
default."
You wish to assign numbers to describe the likelihood of the events.
Let Ei = 1 if event Ei occurs and Ei = 0 if not.
Choose numbers xi to minimize your forecast error:

s(x1; :::xnjE1; :::;En) =
nX
i=1

(xi � Ei )2
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De�nition
Coherence: A set of predictions, fx�i g is coherent if there is no
alternative set of predictions fxig such that

s(x1; :::xnjE1; :::;En) � s(x�1 ; :::x
�
n jE1; :::;En)

8fEig con�gurations
s(x1; :::xnjE1; :::;En) < s(x�1 ; :::x

�
n jE1; :::;En)

for some fEig

Theorem
Convexity: 0 � x � 1:

Proof.
Suppose x < 0. This x only appears as (x � 1)2 and x2: Both of
these can be reduced by increasing x to 0. The same logic
establishes that x � 1:
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Additivity

Theorem
Additivity: Let x refer to the event E and y the event � E. Then
x + y = 1.

Proof.
Consider only terms involving x and y , The isoscore sets
corresponding to the event E are spheres centered on (1,0) in the
x ; y plane, and the sets corresponding to � E are spheres centered
on (0,1). The coherent choices occur at tangencies, which lie on
the line segment connecting the centers of the spheres. Thus,
x + y = 1. Conditioning shows that if x is the event E , y the
event F , and z the event E or F , and E and F are mutually
exclusive, then x + y = z .
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Graph for Proof
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Multiplication

Theorem
Multiplication: Let x correspond to E, y to F given E, and z to E
and F . Then z = xy.

Proof.
There there are 3 con�gurations: EF , in which case the score is
(x � 1)2 + (y � 1)2 + (z � 1)2; E (1� F ), giving
(x � 1)2 + y2 + z2; and (1� E )(1� F ), giving x2 + z2. The
isoscore sets are the spheres centered on (1,1,1) and (1,0,0) and
the cylinders centered on the y axis in the (x ; y ; z) coordinate
system. The coherent triplets (x ; y ; z) must lie in the convex hull
of (1,1,1), (0,y,0) and (1,0,0). Thus, (x ; y ; z) =
�(1; 1; 1) + �(0; y ; 0) + (1� �� �)(1; 0; 0); implying z = xy .
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Characterization (Finished)

These three properties are often taken as de�ning a system of
probabilities.
We have obtained them from coherence
The coherent way to measure uncertainty is by probability.
This development is due to DeFinetti
The quadratic speci�cation is inessential to give probability as the
coherent measure of uncertainty (Lindley)
This development does not say what the probabilities are
(numerically) or where they come from.
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The likelihood function

Expert judgement e is crucial at every step of a statistical analysis.
Data are asset/years In each year, there is either a default or not.
We model the problem as independent Bernoulli sampling
conditional on �:
di indicates default (di = 1) or not (di = 0). The cond.
distribution is p(di j�; e) = �di (1� �)1�di .
Let D = fdi ; i = 1; :::; ng r = r(D) =

P
i di Then

p(Dj�; e) =
Q
�di (1� �)1�di

= �r (1� �)n�r
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The likelihood function 2

As a function of � for given data D this is the likelihood function
L(�jD; e): Since this depends on D only through r , we can focus
on the distribution of r

p(r j�; e) =
�n
r

�
�r (1� �)n�r

As a function of � for given data r , this is the likelihood function
L(�jr ; e):Since r(D) is a su¢ cient statistic, no other function of
the data is informative about � given r(D). The strict implication
is that no amount of data massaging or processing can increase the
data evidence on �.
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Likelihood Functions L(�jr ; e) = L(�jr ; e)=max� L(�jr ; e)

Figure 1: Likelihood Functions, n=100
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Expected likelihood functions for given � (Explain)

Figure 3: Expected Likelihood, n=100
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Expert Information

There is some information available about � in addition to the
data.
We expect that the portfolio in question is a low-default portfolio.
Thus, we would be surprised if � turned out to be, say, 0.2.
Further, there is a presumption that no portfolio has default
probability 0.
Can this information be organized and incorporated in the analysis?
Yes.
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Quanti�cation of uncertainty about �

We know uncertainty should be measured by probabilities
Quanti�cation of a physical property (length, weight), involves
comparison. with a standard ( meter, kilogram).
Uncertainty: comparison with a simple experiment: drawing balls
from an urn, sequences of coin �ips.
Events: A = "� � 0:005; "B = "� � 0:01; " C = "� � 0:015; "etc.:
Assign probabilities by comparison; A is about as likely as seeing 3
heads in 50 throws of a fair coin. This requires some thought and
some practice, but is feasible
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Statistical Model for uncertain �

As in the case of defaults, uncertainty is modeled with a probability
distribution, p(�je):
Unlikely that p(�je), will be an exact and accurate description of
beliefs.
Judgement: Does our statistical model capture the essential
features of the problem?
Practical matter: functional form for the prior distribution p(�je):
The beta distribution for the random variable � 2 [0; 1] with
parameters (�; �) is

p(�j�; �) = �(�+ �)

�(�)�(�)
���1(1� �)��1
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Generalizations

The beta distribution with support [a; b]. This distribution has
mean E� = (b�+ a�)=(�+ �). Examples:

Figure 6: Examples of 4-parameter Beta Distributions
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Representation of Prior Information

Beta distributions cannot represent arbitrary coherent beliefs.
For example, Betas are either unimodal or have modes at the
endpoints.
Mixtures give much greater �exibility,

p(�j�1; �2; �1; �2; �) = �p(�j�1; �1) + (1� �)p(�j�2; �2)

An arbitrary continuous distribution can be approximated
arbitrarily well with enough mixture components.

N. M. Kiefer Default Estimation



Uncertainty
Likelihood and Expert Information

Inference

Likelihood
Expert Information

Updating (learning)

Ingredients: p(�je) (expert opinion) and p(r j�; e) (data)
The rules for combining probabilities imply
P(AjB)P(B) = P(A and B) = P(BjA)P(A), or

P(BjA) = P(AjB)P(B)=P(A)
Applying this rule gives Bayes�rule for updating beliefs

p(�jr ; e) = p(r j�; e)p(�je)=p(r je)

the posterior distribution describing the uncertainty about � after
observation of r defaults in n trials.
p(r je) is the marginal (in �) distribution of the number of defaults

p(r je) =
Z
p(r j�; e)p(�je)d�:
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Prior Distribution

I have asked an expert to specify a portfolio and give me some
aspects of his beliefs about the unknown default probability.
Portfolio: loans to highly-rated large banks.
There are 50 or fewer banks in this highly-rated category
A sample period over the last 7 years or so might include 300
observations max.
Def of default is an issue. Probability of "insolvency?"
Consistent de�nitions in expert information and in data.
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Thinking about Quantiles
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Thinking about Quantiles 2

Guidance if necessary (can be ignored): 10% is a little less than
the probability of getting 3 heads in 3 throws of a fair coin, 5%
less than 4 heads in 4 throws, 1% a little more than 7 heads in 7
throws.
"Equally likely" is easy to deal with (though perhaps a little more
subtle than it seems).
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Prior Distribution 2

We considered a sample of 300 asset/years. also a "small" sample
of 100 and a "large" sample of 500
Expert Information: The modal value at 300 obs was zero defaults.
The expert was comfortable thinking about probabilities over
probabilities. The minimum value was 0.0001 (one basis point).
Pr(� >0.035)<0.1, and an upper bound was 0.05. The median
value was 0.0033; mean 0.005. Quartiles were assessed.
The lower was 0.00225 ("between 20 and 25 basis points"). The
upper, 0.025. This set of answers is more than enough
information to determine a 4-parameter Beta distribution.
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Prior Distribution 3

I used a method of moments to �t parametric probability
statements to the expert assessments.

Figure 8: Distribution Re�ecting Expert Information
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Assessment Comments

The median of this distribution is 0.0036, the mean is 0.0042.
After the information is aggregated into an estimated probability
distribution, the expert should be reconsulted. Here there was one
round of feedback.
Further rounds were omitted for two reasons.
First, we are doing a hypothetical example here, Thus the prior
should be realistic, but it need not be as painstakingly assessed
and re�ned as in an application.
Second, I did not want to annoy the expert beyond the threshold
of participation.
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Diversion (?) Another motivation for probability

Scoring provided a motivation for quantifying uncertainty in terms
of probabilities.
Another motivation can be provided by a betting argument.
Betting terms avoiding sure losses are consistent with a probability
distribution.
Another reason for insisting on coherence.
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Betting

Suppose a bookie (you) chooses to post betting terms on a set of
events Ek ; k = 1; :::;K :
The set of potential "states of the world" is S .
In the default application, with n asset-years there are 2n states of
the world,
An event, for example "there are exactly 10 defaults," may occur
in many of these states (in this case

� n
10

�
of them).

The terms posted for a bet on Ek are the net gains in each state of
the world from betting 1 on the event.
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Betting 2

Arrange these terms in a matrix A (jS j � K ):
x is the vector of amounts bet on each event. Ax is the vector of
payo¤s in each state.
Since you do not like to give away money, no column of A lies in
the positive cone.
A combination of bets guaranteeing a positive payo¤ is called a
"Dutch Book."
The requirement that Dutch Book is impossible implies coherency:
You choose terms as though you had a probability distribution over
states of the world.
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Farkas�Lemma

Lemma
Farkas�lemma: Ax = b; x � 0; has no solution i¤ the system
A0y � 0; b0y > 0 has a solution.
This is a slight restatement so that y will be nonnegative in our
application. The geometry is illustrated in Figure 3 for
jS j = K = 2.
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Theorem
Suppose the bookie posts terms for a set of bets including all
simple events s 2 S : Either there exists a probability distribution
� = (�1; :::; �jS j) such that �A = 0 (the expected payout for each
bet is zero) or there exists a Dutch Book such that sure losses are
incurred.

Farkas�lemma implies that if there is no Dutch Book there exists a
y with A0y � 0 and b0y > 0:
For any b > 0; y can be taken so that y � 0 and y 01 = 1. We now
allow both positive and negative bets, by also posting terms �A.
The interpretation is that the bookie posts terms and accepts all
bets, for or against. Thus A� = [Aj � A]. Then A�0y � 0 implies
A0y = 0. Then all terms o¤ered must lead to zero expected payo¤s
according to the probability distribution y 0.
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A Familiar Argument?

This is exactly the same mathematical argument that leads to the
"state space distribution" for pricing by expected value in �nancial
markets.
If there are no arbitrage opportunities, there is a distribution of
prices which values claims (usually derivatives) according to
expected values.
This may not be (is not) the distribution actually generating prices.
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The Predictive Distribution (Likely Data Sets)

Figure 9: Predictive Distribution p(r j�; e)

E (r je) =
nP
k=0

kp(kje) =0.424 for n=100, 1.27 for n=300 and 2.12

for n=500. Defaults are expected to be rare events.
N. M. Kiefer Default Estimation
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Posterior Analysis

Figure 11: Posterior Distributions p(�jr ; e) for n=100
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Posterior Analysis 2

Figure 12: Posterior Distributions p(�jr ; e) for n=300
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Figure 13: Posterior Distributions p(�jr ; e) for n=500
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PD�s for the capital model

Given the distribution p(�jr ; e), we might ask for a suitable
estimator for plugging into the required capital formulas
A natural value to use is the posterior expectation, � = E (�jr ; e):
An alternative, by analogy with the maximum likelihood estimatorb�, is the posterior mode �

�.
As a measure of our con�dence we would use the posterior

standard deviation �� =
q
E (� � �)2:

The approximate standard deviation of the maximum likelihood

estimator is �b� =
qb�(1� b�)=n:

N. M. Kiefer Default Estimation
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n r �

�
� b� �� �b�

100 0 0.0036 0.0018 0.000 0.0024 0 (!).
100 1 0.0052 0.0036 0.010 0.0028 0.0100
100 2 0.0067 0.0053 0.020 0.0031 0.0140
100 5 0.0109 0.0099 0.050 0.0037 0.0218
500 0 0.0021 0.0011 0.000 0.0015 0 (!)
500 2 0.0041 0.0032 0.004 0.0020 0.0028
500 10 0.0115 0.0108 0.020 0.0031 0.0063
500 20 0.0190 0.0185 0.040 0.0034 0.0088
Table 1: Default Probabilities: Location and Precision
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Discussion of Estimators

The maximum-likelihood estimator b� is sensitive to small changes
in the data. For n=100, the MLE ranges from 0.00-0.05 as the
number of defaults ranges from 0 to 5
The posterior mean ranges in the same case from 0.0036 to 0.011
The usual estimator for the standard deviation of the
maximum-likelihood estimator gives 0 when no defaults are
observed.
The major di¤erences between the posterior statistics (� and

�
�)

and b� occur at unusual samples, and at zero.
Lesson: the posterior mean "pulls" the MLE in the direction of
the prior expectation.
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Remarks: Information and a suggested estimator

Information is di¢ cult to measure. By one measure the prior
information has 5 times the information in the sample of 100,
almost twice the information of the 300 sample, and about the
same information as the 500 sample.
(An insider comment) The con�dence estimator (Pluto-Tasche) is
�c = b� + f (r ; n); where 0 < f (r ; n) < 1:
Suppose we consider the probability of nondefault, � = 1� �: Thenb� + b� = 1 and � + � = 1; but �c + �c > 1:
The con�dence estimator is incoherent.
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A Mid-Portfolio Application

The bulk of a typical bank�s portfolio are in the middle range
(roughly S&P Baa or Moody�s BBB)
Expert assessment: The minimum value for � was 0.0001. Mean
value 0.01
A value above 0.035 would occur with probability less than 10%,
and an absolute upper bound was 0.3.
The expert did not want to rule out the possibility that the rates
were much higher than anticipated (prudence?).
The median value was 0.01. Quartiles were assessed at 0.0075
and 0.0125.
The expert seemed to be thinking in terms of a normal distribution.
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Prior Distribution (�t to 4-parameter Beta)

Figure 4: Expert information (closeup)
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Figure 5: Predictive distribution p(r ; e)
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All Likely Datasets

Total defaults numbering 0-9 characterize 92% of expected data
sets.
Analysis for these 10 data types, comprising about 262 distinct
datasets, covers 92% of the 2500 possible datasets.
Defaults are expected to be rare events.
This is the key to the ALD approach: results are applicable to
92% of the likely datasets.

N. M. Kiefer Default Estimation
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n r �
�
� b� �� �b�

500 0 0.0063 0.0081 0.000 0.0022 0 (!).
500 1 0.0071 0.0092 0.002 0.0023 0.0020
500 2 0.0079 0.0103 0.004 0.0025 0.0028
500 3 0.0086 0.0114 0.006 0.0026 0.0035
500 9 0.0132 0.0180 0.018 0.0032 0.0060
500 20 0.0215 0.0296 0.040 0.0040 0.0088
500 50 0.0431 0.0425 0.100 0.0053 0.0134
500 100 0.0753 0.0749 0.200 0.0065 0.0179
500 200 0.1267 0.1266 0.400 0.0069 0.0219
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Figure 7: E� and MLE for n=1000
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Robustness: The Cautious Bayesian

p(�je; �) = (1� �)p(�j�; �; a; b)I (� 2 [a; b]) + �

n r �; � = :01 �; � = :1 �; � = :2 �; � = :3 �; � = :4
500 0 0.0063 0.0063 0.0062 0.0061 0.0061
500 1 0.0071 0.0071 0.0071 0.0071 0.0070
500 2 0.0079 0.079 0.0079 0.0079 0.0078
500 3 0.0086 0.0086 0.0086 0.0086 0.0086
500 20 0.0358 0.0358 0.0386 0.0398 0.0405
500 50 0.1016 0.1016 0.1016 0.1016 0.1016
500 100 0.2012 0.2012 0.2012 0.2012 0.2012
500 200 0.4004 0.4004 0.4004 0.4004 0.4004

N. M. Kiefer Default Estimation



Uncertainty
Likelihood and Expert Information

Inference

Entropy

The entropy of a distribution p(x) or of the random variable X is a
measure of the information value of an observation.
Entropy is

H(p) = H(X ) = �E log(X )
= �

X
p(xi ) log(xi )

= �
Z
log(x)p(x)dx

= �
Z
log(x)dP

N. M. Kiefer Default Estimation
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Entropy

The de�nition is most intuitive for a discrete random variable and
extends to continuous or mixed variables by direct de�nition or by
taking discrete approximations and limits.
Changing the base of the logarithm is irrelevant.
Entropy using the base 2 log can be interpreted as the expected
number of binary questions ("is x < a") necessary to �nd the value
of the realization. The base 2 log is extremely useful for coding
results. This interpretation is not as compelling in the continuous
case of "di¤erential entropy," which can be negative. For
continuous distributions it is often useful to use natural logs.

N. M. Kiefer Default Estimation
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Entropy and Prior Distributions

Here we take the approach of �tting the distribution that meets
the expert speci�cation and otherwise imposes as little additional
information as possible
Thus, we maximize the entropy in the distribution subject to the
constraints given by the assessments.
Since we are looking for continuous distributions, we use the
natural log. The general framework is to solve for the distribution p

max
p
f�
Z
p ln(x)dxg

s:t:
Z
p(x)ck (x)dx = 0 for k = 1; :::;K

and
Z
p(x)dx = 1

N. M. Kiefer Default Estimation
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Entropy and Prior Distributions 2

Form the Lagrangian with multipliers �k and �:and di¤erentiate
with respect to p(x)for each x , obtaining the FOC

� ln(p(x))� 1+
X
k

�kck (x) + � = 0

or
p(x) = expf�1+

X
k

�kck (x) + �g

The multipliers are chosen so that the constraints are satis�ed.
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Entropy and Prior Distributions 3

The constraints are written in terms of indicator functions for the
quartiles, for example the median constraint corresponds to
c(x) = I (x < :01)� 0:5. Thus the functional form for the prior
density on � is

p(�) = k expf
X
k

�k (I (� < qk )� �k ) + ��g

Without the mean constraint the linear term in the exponent drops.
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Default Probabilities - Location and Precision, n=500

r �
�
� b� �� �b� �(ent) ��(ent)

0 0.0063 0.0081 0.000 0.0022 0 (!). 0.0024 0.0024
1 0.0071 0.0092 0.002 0.0023 0.0020 0.0048 0.0032
2 0.0079 0.0103 0.004 0.0025 0.0028 0.0070 0.0033
3 0.0086 0.0114 0.006 0.0026 0.0035 0.0085 0.0031
4 0.0094 0.0125 0.008 0.0027 0.0040 0.0096 0.0030
5 0.0102 0.0136 0.010 0.0028 0.0044 0.0106 0.0030
6 0.0109 0.0147 0.012 0.0029 0.0049 0.0115 0.0031
7 0.0117 0.0158 0.014 0.0030 0.0053 0.0114 0.0033
8 0.0125 0.0169 0.016 0.0031 0.0056 0.0133 0.0033
9 0.0132 0.0180 0.018 0.0032 0.0060 0.0144 0.0028
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Issues

The remainder of the paper discusses:
The 2004 Basel document and Newsletter 6; also relevant is the
BBA, LIBA and ISDA report.
Technical issues: assessing expert information, simultaneous
inference, etc
Supervisory issues: O¢ cial and formal attitude toward subjectivity.
Guidelines for using the probability approach.
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Conclusion

Future defaults are unknown, so this uncertainty is modelled with a
probability distribution.
The default probability is unknown. But experts do know
something about it.
Uncertainty about the default probability should be modeled with a
probability distribution.
A realistic example demonstrated the feasibility of the probability
approach.
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